Оба графика функций - параболы и у обоих ветви этих парабол направлены вверх, значит, в обоих случаях наименьшее значение функций достигается в вершине параболы. Найдем вершины каждой из них. из формулы ах²+bx+c B(x; y) x(B) = -b / 2a
1) у = х² - 2х + 7 х(В) = 2/2 = 1 у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6 В(1; 6) - вершина => у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5 х(В) = 7/2 = 3,5 у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25 В(3,5; 20,25) - вершина => у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5
Пусть товарный поезд стоит на месте, а навстречу ему следует пассажирский со скоростью 60км в час+40 км в час=100 км в час Пассажирский проезжает расстояние равное длине товарного (700 м) плюс расстояние, равное своей длине. Найдем расстояние, которое за 36 секунд проходит пассажирский поезд со скоростью 100 км в час. 36 секунд =36/60 мин=36/3600 часа=1/100=0,01 часа. 0,01∙100 = 1 км. проедет пассажирский поезд за 36 секунд со скоростью 100 км/ч 1км-700 м=300 м - длина пассажирского
Найдем вершины каждой из них.
из формулы ах²+bx+c
B(x; y)
x(B) = -b / 2a
1) у = х² - 2х + 7
х(В) = 2/2 = 1
у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6
В(1; 6) - вершина
=> у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5
х(В) = 7/2 = 3,5
у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25
В(3,5; 20,25) - вершина
=> у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5