№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем:
можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка:
Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу:
Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
Тока X0 будет называться точкой максимума, если существует такая её окрестность, где для любых значения Х в данной окрестности выполняется неравенство
Тока X0 будет называться точкой минимума, если существует такая её окрестность, где для любых значения Х в данной окрестности выполняется неравенство
Со словом экстремум нужно быть осторожно.
Если говорить точки экстремума (токи максимума и точки минимума) - то это имеется ввиду "иксовые" значения если говорит экстремумы - то это имеется ввиду "игриковые" значения
cos2y/2+cos2x/2
Объяснение:
1/2*(cos2y+cos2x)