Решение системы неравенств х∈(0,8, 1).
Объяснение:
5х²-9х+4<0
2x+3>=0
Приравняем первое неравенство к нулю и решим как квадратное уравнение:
5х²-9х+4=0
х₁,₂=(9±√81-80)/10
х₁,₂=(9±√1)/10
х₁,₂=(9±1)/10
х₁=8/10=0,8
х₂=10/10=1
Начертим СХЕМУ параболы (не нужно ничего вычислять), которую выражает данное уравнение. Ветви направлены вверх, пересекает ось Ох в двух точках, х=0,8 и х=1. Интервал решений неравенства, при которых у<0 (уравнение функции) находится от 0,8 до 1.
Решение первого неравенства х∈(0,8, 1)
Неравенство строгое, скобки круглые.
Решим второе неравенство:
2x+3>=0
2x>= -3
x>= -3/2
x>= -1,5
Решение второго неравенства х∈[-1,5, +∞)
Неравенство нестрогое, поэтому скобка квадратная (у знака бесконечности всегда круглая).
Теперь на числовой оси нужно отметить решение первого и решение второго неравенства, чтобы найти пересечение решений, то есть, такое решение, которое подходит и первому и второму неравенству.
Пересечение решений х∈(0,8, 1).
Это и есть решение системы неравенств.
С применением степени
(x^2 - 1)/(x^3 + 1)(квадрат и куб) и дроби
Квадратный корень
sqrt(x)/(x + 1)Кубический корень
cbrt(x)/(3*x + 2)С применением синуса и косинуса
2*sin(x)*cos(x)Арксинус
x*arcsin(x)Арккосинус
x*arccos(x)Применение логарифма
x*log(x, 10)Натуральный логарифм
ln(x)/xЭкспонента
exp(x)*xТангенс
tg(x)*sin(x)Котангенс
ctg(x)*cos(x)Иррациональне дроби
(sqrt(x) - 1)/sqrt(x^2 - x - 1)Арктангенс
x*arctg(x)Арккотангенс
x*arсctg(x)Гиберболические синус и косинус
2*sh(x)*ch(x)Гиберболические тангенс и котангенс
ctgh(x)/tgh(x)Гиберболические арксинус и арккосинус
x^2*arcsinh(x)*arccosh(x)Гиберболические арктангенс и арккотангенс
x^2*arctgh(x)*arcctgh(x)