Знайти проміжки зростання і спадання функції. y = (1/4)*(x^4)-(1/3)*(x^3)-3*(x^2)+2 Решение 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = x³ - x² - 6x или f'(x) = x(x² - x - 6) Находим нули функции. Для этого приравниваем производную к нулю x(x² - x - 6) = 0 Откуда: x₁ = - 2 x₂ = 0 x₃ = 3 (-∞ ;-2) f'(x) < 0 функция убывает (-2; 0) f'(x) < 0 функция возрастает (0; 3) f'(x) > 0 функция убывает (3; +∞) f'(x) < 0 f'(x) > 0 функция возрастает В окрестности точки x = -2 производная функции меняет знак с (-) на (+). Следовательно, точка x = -2 - точка минимума. В окрестности точки x = 0 производная функции меняет знак с (+) на (-). Следовательно, точка x = 0 - точка максимума. В окрестности точки x = 3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3 - точка минимума.
а) 64a² - x² = (8a – x) * (8a + x);
б) x5 – 2x4 + x³ = x³ * (x² - 2x + 1) = x³ * (x – 1)²;
в) 1 – 64z³ = (1 – 4z) * (1 + 4z + 16z²);
г) 36x² - (1 – x)² = (6x – (1 – x)) * (6x + (1 – x)) = (7x – 1) * (5x + 1).
88 + 87 – 86.
Выносим за скобки общий множитель 86 и получаем:
86 * (8² + 8 – 1) = 86 * (64 + 8 – 1) = 86 * 71.
Один из множителей 71, значит, исходное выражение делится на 71. Что и требовалось доказать.
Уравнение.
(x + 1) * (x² - x + 1) = x³ - 2x
x³ - x² + x + x² - x + 1 – x³ + 2x = 0
2x + 1 = 0
2x = -1
x = -0,5.
ответ: х = -0,5.