Вырази синусы данных углов через синус углов из первой четверти: sin (–55°) = – sin 55°, sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) = –sin 60°, sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°. Так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус, то sin 35° < sin 55° < sin 60°. Но тогда –sin 35° > –sin 55° > –sin 60°, поэтому sin 1295° > sin (–55°) > sin 600°. Поэтому самое маленькое будет sin 600°, затем sin (–55°), а уж потом sin 1295.
Чтобы решить надо координаты подставить в данные функции и где будет верное равенство там и находится точка. Например: у = х^2 , а так как точка имеет координаты (х;у), то А(2;4), D (-4;16) принадлежит так как 4 = 2^2 , 16 =(-4)^2 ,а для функции у = - х^2 принадлежат точки B (-7;-49), C(5;-25) так как -49=-(-7)^2, -25 = -5^2 3) чтобы найти точки пересечения надо функции между собой приравнять: у=-х^2 y=-4 -x^2=-4 x^2=4 x1=2 x2=-2 точки пересечения А(2;-4) и В(-2;-4) 4) здесь надо построить параболу у =x^2 ветви направлены вверх и прямую линию у=2х+3 проходящую через координаты (0;3) и (-3/2;0) 2) здесь тоже легко у=х^2 - это парабола отмечаешь отрезок [-3,1] на оси Х и проводишь перпендикуляр от этих точек до пересечения с графиком и должен получить у наибольшее(-3)=9, у наименьшее(1)=1 , а с -бесконечностью у наибольшее=+бесконечности
(5+4x)^2=(9-21x)*(4х+5)
(5+4x)^2-(9-21x)*(5+4x)=0
(5+4x)(5+4x-9+21)=0
(5+4x)(4x+17)=0
5+4x=0 4x+17=0
4x=-5 4x=-17
x=-5/4 x=-17/4
x=-1 1/4 x=-4 1/4