Рассмотрение математических задач, решавшихся в Древнем Египте и Вавилоне, показывает, что еще в глубокой древности возникли некоторые приемы приближенных вычислений. Под влиянием запросов техники в настоящее время разработаны разные методы приближенных вычислений.
Большие заслуги в развитии теории приближенных вычислений имеет академик Алексей Николаевич Крылов (1863 - 1945). Он в 1942 году писал: «Во всех справочниках, как русских, так и иностранных, рекомендуемые приемы численных вычислений могут служить образцом, как эти вычисления делать не надо… вычисление должно производиться с той степенью точности, которая необходима для практики, причем всякая неверная цифра составляет ошибку, а всякая лишняя цифра – половину ошибки».
очевидно что ни один из х1, х2, х3, х4 не может быть 0, (остальные тогда должны равняться 2, и 0+2*2*2=2 неверное, противоречие)
домножая первое на х1, второе на х2, третье на х3, четвертое на х4, получим
вычитая (и используя разность квадратов) получим
откуда
или
аналогично получаем другие соотношения таких же двух возможных типов соотношений между корнями
итого в общем надо рассмотреть следующие возможные комбинации (остальные дадут повтор в силу симметрии записи уравнений по переменным),
+
первое исходное уравнение
можем убедиться что (1,1,1,1) - единственное решение