Дано: n и m - натуральные n≠1 и m≠1 Доказать: n³+m³ - составное число Доказательство: Составное число - число полученное путём произведения двух натуральных чисел, больших единицы. n³+m³=(n+m)(n²-nm+m²) По условию, n и m - натуральные числа, не равные единице, следовательно, их сумма является натуральным числом не равным единице. Посмотрим на вторую скобку: n²+m² - натуральное число, nm - натуральное число, причём n²+m² > mn, т.е. n²+m²-nm - также натуральное число больше единицы. Получаем, что n³+m³ - является произведением двух натуральных чисел, больших единицы. Следовательно, n³+m³ - составное число. Что и требовалось доказать.
Обозначим lg(x)=y если у=0 неравенство верно. Если y>0, то на него можно поделить и получить: y^3-4y^2+5y-2=>0 или, что то же самое: y^3-4y^2+4y+y-2=>0 y*(y-2)^2>(2-y) Если у больше или равно 2 это верно.Если y<2 то поделив на у-2 получим у^2-2y меньше -1, (у-1)^2<0, что невозможно. Значит у больше или равно 2. Если y<0 то y*(y-2)^2<(2-y) обе части положительны y^2-2y+1 >0 (y-1)^2>0 Значит y<0
х=>100 или 0<х<=1 ответ: две области х больше нуля и меньше либо равен 1 или х больше либо равен 100.
n≠1 и m≠1
Доказать: n³+m³ - составное число
Доказательство:
Составное число - число полученное путём произведения двух натуральных чисел, больших единицы.
n³+m³=(n+m)(n²-nm+m²)
По условию, n и m - натуральные числа, не равные единице, следовательно, их сумма является натуральным числом не равным единице.
Посмотрим на вторую скобку: n²+m² - натуральное число, nm - натуральное число, причём n²+m² > mn, т.е. n²+m²-nm - также натуральное число больше единицы.
Получаем, что n³+m³ - является произведением двух натуральных чисел, больших единицы.
Следовательно, n³+m³ - составное число.
Что и требовалось доказать.