1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)


Это функция общего вида
2)


Это функция общего вида
3)


Это функция общего вида
3.
1)

Значит
![min_{[2;4]}f(x)=min_{[-4;-2]}f(x)=-1\\max_{[2;4]}f(x)=max_{[-4;-2]}f(x)=3](/tpl/images/1407/6823/69e2d.png)
2)

Значит
![min_{[2;4]}f(x)=-min_{[-4;-2]}f(x)=1\\max_{[2;4]}f(x)=-max_{[-4;-2]}f(x)=-3](/tpl/images/1407/6823/5cc0f.png)
4.

Это биквадратное уравнение. Делаем подстановку

Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно

Делаем проверку:
1) а=-1

Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3

Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
При каких значениях а и в равенство
а/ (х+5) + b/(х-2)² = (х²+24) / (х³+х²-16х+20) является тождеством ?
Решение: а / (х+5) + b/(х -2)² = (х²+24) / (х³+х²-16х+20)
x³+х²-16х+20 = x³ - 2х²+3x²-6х - 10x +20 =x²(x-2) +3x(x-2) -10(x-2) =
(x-2)(x² +3x -10) =(x-2)(x +5)(x -2) = (x +5)(x -2)²
- - -
а / (х+5) + b/(х -2)² = (х²+24) / (х+5) (х -2)²
( a(х -2)² +b(x+5) ) / (х+5) (х -2)² = (х²+24) / (х+5) (х -2)²
a(х -2)² +b(x+5) ≡ х²+24 для всех x
ax² - 4ax +4a +bx +5b ≡ х²+24
ax² + (b -4a) x +4a +5b ≡ 1*х²+0*x +24 многочлены равны если
{ a=1 ; b-4a =0 ; 4a +5b =24 . ( система написана в одной строке)
{ a=1 ; b=4a ; 4a +5b =24.
{ a=1 ; b=4 ; 4*1 +5*4 =24.
ответ : a=1 ; b=4.