Пусть мальчиков m, девочек d. Тогда 100% * m + 100% * d = 130% * m + 50% * d 30 % m = 50% d 3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство. 3 * 10M = 5d 6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское: 6M = 6D M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.
Графически мы имеем 2 прямоугольных треугольника с площадями по 150 каждый и гипотенузами по 25. площадь прямоуг. треуг-ка S=ab/2, а квадрат гипотенузы (25) равен сумме квадратов катетов (искомых сторон). тогда имеем систему уравнений:
ab=300 =>b=300/a. Подставляем b в первое уравнение, имеем: a^2+90.000/a^2=625 => a^4+90.000=625a^2 => a^4-625a^2+90.000=0 Заменяем a^2 на х, получаем обычное квадратное уравнение x^2-625a+90.000=0 Дискриминант этого ур-я равен 30625, а его корень равен 175 (надеюсь, формулу дискриминанта, которая b^2-4ac, напоминать не надо?) корни ур-я ищем по формуле и получаем два корня уравнения, равные 225 и 400. Это, как мы помним, a^2, извлекая из каждого значения кв. корень получим два значения а: а1=15, а2=20. Подставляя их в формулу b=300/a получим значения.... b1=20, b2=15. Следовательно стороны прямоугольника имеют 15 и 20 см длины соответственно
100% * m + 100% * d = 130% * m + 50% * d
30 % m = 50% d
3m = 5d
Так как 30% * m = 3m/10 - целое число, то m делится на 10. Обозначим m = 10M и подставим в равенство.
3 * 10M = 5d
6M = d
Отсюда число девочек делится на 6 (заметим, что при этом условии 50% девочек - гарантированно целое число). После обозначения d = 6D равенство превращается в издевательское:
6M = 6D
M = D
Очевидно, минимум будет достигаться, если M = D = 1. Тогда m = 10 и d = 6.
Можно было сразу после заключения о том, что m делится на 10, начать перебирать возможные m. ответ при этом получился бы быстрее.