1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.
Скорость реки 2 км/час
Скорость лодки 7 км/час
Объяснение:
х - скорость реки
х + 5 - скорость лодки
(х + 5) + х - скорость лодки по течению = 2х + 5
(х + 5) - х - скорость лодки против течения = 5
15 : 5 - время лодки против течения = 3
18 : (2х + 5) - время лодки по течению
Так как по условию задачи против течения лодка шла на 1 час больше, можем составить уравнение:
3 - 18 : (2х + 5) = 1, общий знаменатель (2х + 5), получаем:
3 * (2х + 5) - 18 = 2х + 5
6х + 15 - 18 = 2х + 5
6х - 2х = 5 + 3
4х = 8
х = 2 это скорость реки, 2+ 5 = 7 - скорость лодки
Проверка:
Уже известно, что против течения лодка шла 3 часа.
По течению: 18 : (7 + 2) = 2 (часа), как в условии задачи.
Объяснение: