1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Очевидно, что 3/5≠4/7 ,значит сначало был вынут белый,а потом чёрный шар или наоборот. Пусть Петя достал белый шар. Тогда ,если x общее число шаров,то оставшееся число белых в первом случае равно: 3/5 *(x-1) ,а во втором случае: 4/7*(x-1). Тк белый шар достали только в первом случае,то во второй раз белых будет на 1 больше чем во второй,но 4/7<3/5 (20/35<21/35) То есть такое невозможно,а значит Петя достал чёрный,а Вася белый.Тогда белых будет на 1 больше в первом случае, то есть: 3/5*(x-1)-4/7*(x-1)=1 1/35*(x-1)=1 x-1=35 x=36. ответ:36
не знаю , подстановка это или нет , но мне кажется , что так очень понятно )