Объяснение:
возьмём два дня(чередующихся) с наибольшим кол-во оценок
Пн - 5
Вт - 10\-\(ученики не могут два раза повторяться)
Ср - 6 /-/-16
Чт - 3(в сумме)
Пт - 12
вот минимум
№ 2:
при каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0< а< 4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а> 4 - 2 корня (от исходной параболы)
ответ: 4
(-2; -1). да.
Объяснение:
1.
1.1. в первом уравнении выводим значение у:
у = 0,5х
1.2. во второе уравнение вносим полученное значение у, образовав тем самым подобные пары с х:
2х + 0,5х = -5
теперь уже легко можно вычислить числовое значение х. сводим подобные числа и находим х:
2,5х = -5,
х = -2.
1.3. найдя числовое значение х, мы сможем теперь найти и числовое значение у. это проще сделать с второго уравнения:
2 (-2) + у = -5,
-4 + у = -5,
у = -1.
точка пересечения двух прямых (-2; -1).
2.
подставим значения координат х и у точки в третье уравнение прямой:
3 (-2) - 2 (-1) = -4
-6 + 2 = -4
-4 = -4.
значит, третья прямая проходит через эту точку.
16
Объяснение:
Т. к. никто из учеников не получал пятёрки два дня подряд, а во вторник получили 10, а в среду 6, то ответ 16