Пусть Х км/ч - собственная скорость катера, а У км/ч скорость реки. Скорость катера по течению составляет (х+у) км/ч, а скорость катера против течения - (х-у) км/ч. За 2 часа по озеру катер проплывает 2х км, а плот за 15 часов проплывает по реке 15у км. Эти расстояния равны между собой. Против течения реки за 6 часов катер х-у) км, а по течению за 4 часа - 4(х+у). Разница между расстоянием против течения и расстоянием по течению реки составила 6(х-у)-4(х+у) или 10 км. Составим и решим систему уравнений:
2х=15у
6(х-у)-4(х+у)=10
х=15у:2
6х-6у-4х-4у=10
х=7,5у
2х-10у=10
х=7,5у
2*7,5у-10у=10
х=7,5у
15у-10у=10
х=7,5у
5у=10
х=7,5у
у=10:5
х=7,5у
у=2
х=7,5*2
у=2
х=15
у=2
ответ: собственная скорость катера 15 км/ч.
по теч . 40км х + 5км/ч 40/(х +5) ч
пр. теч. 30 км х - 5 км/ч 30/(х -5) ч
V собств. = х км/ч
Vтеч. = 5 км/ч
Составим уравнение:
40/(х + 5) + 30/(х -5) = 5 | * (x +5)(x - 5)≠ 0
x≠ -5, x≠ 5
40(x - 5) +30(x+5) = 5(x² -25)
40x -200 +30x +150 = 5x² -125,
5x² -70x -75 = 0
x² - 14x - 15 = 0
По т. Виета: х1 = -1 ( не подходит по условию задачи)
х2 = 15 (км/ч) - V собств.
ответ: Vсоств. = 15 км/ч