Найдите абсцису точки крафика функции f(x)= x^2 - 5x, в которой касательная к этому графику образует с положительным направлением оси абсцисс угол 45°.
1) Найдем корни первого уравнения: x^2+5x+6=0 D=5^2-4*1*6=1 x1=(-5-1)/2=-3 x2=(-5+1)/2=-2 Наибольшим корнем этого уравнения является х=-2.
2). Найдем корни второго уравнения: 4x-x*|x|=0 а) если подмодульное выражение <0, то модуль раскроем со сменой знака: 4x+x^2=0 x(4+x)=0 x1=0 x2=-4 б). если подмодульное выражение >=0, то модуль раскроется с тем же знаком: 4x-x^2=0 x(4-x)=0 x=0 x=4 Как видим, наименьшим корнем этого уравнения является х=-4. -2 > -4 на 2
ответ: -2 > -4 (наибольший корень 1-го уравнения больше наименьшего корня 2-го).
3) b - a < 2
Объяснение:
По условию a > b. Отсюда получаем следующие равносильные неравенства:
а) a - b >0 или 0 < a - b
б) 0 > b - a или b - a < 0.
Рассмотрим утверждения задачи:
1) a - b < -3
Из этого неравенства в силу а) 0 < a - b получаем:
0 < a - b < -3 или 0 < -3, противоречие, значит неравенство неверное.
2) b - a > 1
Из этого неравенства в силу б) 0 > b - a получаем:
0 > b - a > 1 или 0 > 1, противоречие, значит неравенство неверное.
3) b - a < 2
Так как б) b - a < 0, то
b - a < 0 < 2, значит неравенство верное.
4) Верно 1, 2 и 3
Так как 1) и 2) неверно, то утверждение неверно.