Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
f(x) = y=(x^2-9x+20)(x^2+3x+2)/x^2-3x-10; D_f = R \ {5, -2} f(x) = (x - 4)(x + 1); f(x) = x^2 - 3x - 4; Строим график f(x), для этого строим график параболы g(x) = x^2 - 3x - 4, исключаем точки с абсциссами 5 и -2. Смотрим сколько общих точек может быть у f(x) и h(x) = y = a. Так как g(5) == g(-2), эти точки нам не подходят, потому что они лежат на одной прямой, и если график h(x) проходит через (5, g(5)), то он проходит и через (-2, g(-2), т.е. не было бы общих точек. Остается вершина параболы x0 = 3 / 2, y0 = g(1.5) = -6,25. ответ: -6.25.
64466467672
72772272754446445464545