ответ: 6см и 7см
Объяснение: пусть одна сторона=х, тогда вторая=у. Так как периметр - это сумма всех сторон,
составим 1-е уравнение, зная периметр прямоугольника: 2х+2у=26.
Площадь - это произошло его сторон и поэтому: х × у=42. Теперь составим систему уравнений:
{2х+2у=26 |÷2
{х × у=42
{х+у=13
{х×у=42
{х=13-у
{х×у=42.
Теперь подставим значение х во второе уравнение: х × у=42:
(13-у)y=42
13y-y²-42=0
-y²+13y-42=0
y²-13y+42=0
D=169-4×42=169-168=1
y1=(13-1)÷2=12÷2=6
y²=(13+1)÷2=14÷2=7;. Итак:
у1=6
у2=7.
Теперь подставим каждое значение у в уравнение: х=13-у:
х1=13-6=7см
х2=13-7=6см.
Здесь подходят оба значения х и у, и числа получаются одинаковые, разница только в обозначениях.
1. Алгебраическая дробь — это дробь, числитель и знаменатель которой — многочлены (причем знаменатель отличен от нуля). Если ввести обозначение многочленов большими латинскими буквами: A, B, C, D, … , то алгебраическую дробь можно записать в виде.
2. Допустимыми значениями букв, входящих в алгебраическую дробь называют такие значения, при которых числитель этой дроби не равен нулю Одним из разложения многочленов на множители является применение формул сокращенного умножения.
3. В действиях с алгебраическими дробями. С алгебраическими дробями определены следующие действия: сложение, вычитание, умножение, деление и возведение в натуральную степень.
4.Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
5.Основное свойство алгебраической дроби позволяет сокращать дроби и приводить их к наименьшему общему знаменателю. Используют для: сокращения дробей, для нахождения наименьшего общего знаменателя необходимо найти наименьшее общее кратное (НОК) двух знаменателей.