Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда
1) an am = an+m
2)
a
n
a
m
=
a
n
−
m
3) (an)m = anm
4) (ab)n = an bn
5)
(
a
b
)
n
=
a
n
b
n
6) an > 0
7) an > 1, если a > 1, n > 0
8) an < am, если a > 1, n < m
9) an > am, если 0< a < 1, n < m
В практике часто используются функции вида y = ax, где a - заданное положительное число, x - переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0,
a
≠
1
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0,
a
≠
1
, не имеет корней, если
b
≤
0
, и имеет корень при любом b > 0.
3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 < a < 1.
Это следует из свойств степени (8) и (9)
Построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.
Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х < 0 и |х| увеличивается, то график быстро приближается к оси Oх (но не пересекает её). Таким образом, ось Ох является горизонтальной асимптотой графика функции у = ax при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси Ох.
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х < 0 и |х| увеличивается, то график быстро поднимается вверх.
Обозначим отправную точку буквой "А", а точку назначения - буквой "В". От А до В 76 км. Следовательно, и от В до А 76 км:
A_______76________B
В_______76________А
А что со временем? Теплоход стоит в точке В 1 час. А на всё путешествие он тратит 20 часов. Следовательно, чтобы узнать сколько он тратит времени именно на передвижение, надо из общего количества часов этот 1 час стоянки убрать:
20 - 1 = 19.
Что ещё? Ещё у нас есть течение реки. 3 км/ч. Заметим, что отправляясь из точки А, теплоход шёл по течению. А возвращаясь в точку А - против течения. Задача просит найти скорость теплохода. Она у нас конечно будет иксом (x). Так вот, вспоминая о недавней скорости течения реки, напрашиваются вот такие записи:
(х + 3) - скорость по течению реки (скорость теплохода + скорость течения)
и
(х - 3) - скорость против течения реки (скорость теплохода минус скорость течения).
Вот и всё. Все цифры, необходимые для решения задачи, у нас есть. Вот они:
76 км 19 часов (х + 3) км/ч (х - 3) км/ч
Теперь надо вывести уравнение. Как? Ну, смотря на известные числа, можно понять, что километры, часы и километры в час говорят о популярной формуле:
V * t = S
Можно попробовать сразу подставить всё известное в формулу, однако, лучше не торопиться. У нас тут целых две скорости и время, которое затрачено на весь путь туда-обратно. Получится белиберда. Но, чуток поразмышляем и придём вот к чему:
Время общее (на весь путь). Две скорости (одна - в одну сторону, вторая - в обратную). Один путь (в одну сторону). И... ещё один путь (в обратную). То есть, получается у нас вот что:
76 км 76 км 19 часов (х + 3) км/ч (х - 3) км/ч
Что-то поинтереснее вырисовывается.) У нас две скорости и два пути. И одно ОБЩЕЕ время. Вспомним ту самую популярную формулу:
V * t = S
А как там время выразить? Вот:
t = S/V
Два пути и две скорости. И ОБЩЕЕ время. Если каждый путь разделим на каждую скорость, то получим время, затраченное на один путь, и время, затраченное на второй путь. А ежели мы их (времена эти) ещё и сложим, то получим ОБЩЕЕ время. Уравнение готово. Остаётся только решить его:
Минусовой корень сразу отметаем, поскольку скорость теплохода не может быть отрицательной.) Значит, берём девятку. Проверим:
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m - любые действительные числа. Тогда
1) an am = an+m
2)
a
n
a
m
=
a
n
−
m
3) (an)m = anm
4) (ab)n = an bn
5)
(
a
b
)
n
=
a
n
b
n
6) an > 0
7) an > 1, если a > 1, n > 0
8) an < am, если a > 1, n < m
9) an > am, если 0< a < 1, n < m
В практике часто используются функции вида y = ax, где a - заданное положительное число, x - переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0,
a
≠
1
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0,
a
≠
1
, не имеет корней, если
b
≤
0
, и имеет корень при любом b > 0.
3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 < a < 1.
Это следует из свойств степени (8) и (9)
Построим графики показательных функций у = ax при a > 0 и при 0 < a < 1.
Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х < 0 и |х| увеличивается, то график быстро приближается к оси Oх (но не пересекает её). Таким образом, ось Ох является горизонтальной асимптотой графика функции у = ax при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = ax при 0 < a < 1 также проходит через точку (0; 1) и расположен выше оси Ох.
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х < 0 и |х| увеличивается, то график быстро поднимается вверх.