Обозначим тупые углы трапеции как х. Так как меньшее основание и боковая сторона равны, то диагональ образует равнобедренный треугольник. Угол при вершине этого треугольника равен тупому углу трапеции, тоесть х. Обозначим углы при основании треугольника как у и выразим х через у: х=180-2у. Из условия известно, что диагональ образует с боковой стороной угол в 120 градусов, тоесть х=у+120. Теперь приравняем и решим полученное уравнение: 180-2у=у+120 => 3у=60 => у=20. Тогда тупой угол трапеции равен х=20+120=140 градусов. И в конце концов, можем найти острый угол трапеции: 180-140=40. ответ: углы трапеции 140 и 40 градусов
у = 2sinx + sin2x y`=2cosx + 2cos2x=2*2*cos(3x/2)*cos(x/2) y`=0 при 3x/2=pi/2+pi*k или x/2=pi/2+pi*n x=pi/3+2pi*k/3 или x=pi+2pi*n x=pi/3+2pi*k/3 минимальное и максимальное значение надо искать среди точек x=0;x=pi/3;x=pi;x=3pi/2 y(x=0)= 2*sin(0) + sin(2*0)=0 y(x=pi/3)= 2*sin(pi/3) + sin(2*pi/3)=3*корень(3)/2 = 2,598076 - локальный максимум y(x=pi)= 2*sin(pi) + sin(2*pi)=0 y(x=3*pi/2)= 2*sin(3*pi/2) + sin(2*3*pi/2)=-2 - локальный минимум во вложении график на исследуемом участке и тот же график на более широком участке
переводи в украинском не шарю