Скорее всего здесь речь идет об убывающей геометрической прогрессии...
для убывающей геометрической прогрессии Sn -> b1 / (1-q)
b1 / (1-q) = 3/4 ___ 4b1 = 3(1-q)
и сумма кубов тоже будет убывающей... => Sn3 -> (b1)^3 / (1-q^3)
(b1)^3 / (1-q^3) = 27/208
27(1-q)^3 / (64(1-q^3)) = 27/208
(1-q)^3 / ((1-q)(1+q+q^2)) = 4/13
(1-q)^2 / (1+q+q^2) = 4/13
13(1-2q+q^2) = 4(1+q+q^2)
13-26q+13q^2 - 4-4q-4q^2 = 0
3q^2 - 10q + 3 = 0
D = 100 - 4*9 = 64
q1 = (10 + 8)/6 = 3 ___ q2 = (10 - 8)/6 = 1/3
b1 = 1/2
Сумма квадратов членов прогрессии = (b1)^2 / (1-q^2) = 1/4 : 8/9 = 1/4 * 9/8 = 9/32
ответ: 1) 5х-у=1
х+3у=5
у=-1+5х
х+3(-1+5х)=5
решаем уравнение: х+3(-1+5х)=5
х-3+15х=5 - 16х-3=5
16х=5+3=8 - х=8|16 - х=1|2
возвращаемся к системе: у=-1+5х получаем у=-1+5*1|2
х=1|2 у=3|2
2) 9х+2у=16
3х-5у=11
х=16|9-2|9у
3(16|9-2|9e)-5у=11
решаем уравнение: 3(16|9-2|9e)-5у=11 16|3-2|3y-5y=11
16|3-17|3y=11 |умножаем на 3 (чтобы убрать дробь)
16-17y=33
-17у=33-16 -17у=17 у=-1
возвращаемся к системе: х=16|9-2|9у получаем х=16|9-2|9*(-1)
х=16|9+2|9 х=2
х=2 у=-1
3) 2х-3(2у+1)=15
3(х+1)=3у=2у-2
убираем в первом уравнении скобки: 2х-6у-3=15 2х=15+6у+3 2х=18+6у (делим на 2) х=9+3у
получаем: х=9+3у
3(9+3у+1)+3у=2у-2
Решаем уравнение: 3(9+3у+1)+3у=2у-2
3(10+3у)+3у=2у-2
30+9у+3у=2у-2 30+12у=2у-2
12у-2у=-2-30 10у=-32 (делим обе стороны на 10) у=-16|5
возвращаемся к системе: х=9+3у получаем х=9+3*(-16|5) получаем х=-3|5 y=-16|5
если стоит этот знак | - то это дробь