все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
|х+14| - 7* |1 - х| > х или что тоже самое |х+14| - 7* |x -1| > х разобьем на три интервала 1) х+14<0 и x-1<0 x<-14 и x<1 объединяя оба эти условия получим x<-14 на этом интервале наше неравенство имеет вид -(х+14) + 7* (x -1) > х -x-14+7x-7>x 6x-21>x 5x>21 x>21/5 но это противоречит условию x<-14. На этом интервале решения нет. 2) х+14≥0 и x-1<0 x≥-14 и x<1 объединяя оба эти условия получим -14≤x<1 на этом интервале наше неравенство имеет вид (х+14) + 7* (x -1) > х x+14+7x-7>x 8x+7>x 7x>-7 x>-1 объединяя это условие с -14≤x<1 получим -1 <x<1
3) х+14≥0 и x-1≥0 x≥-14 и x≥1 объединяя оба эти условия получим x≥1 на этом интервале наше неравенство имеет вид (х+14) - 7* (x -1) > х x+14-7x+7>x -6x+21>x 21>7x 3>x объединяя это условие с x≥1 получим 1≤x<3 теперь последнее действие: объединим решения 2) и 3) -1 <x<3 или x∈(-1;3)
ответ:
получи подарки и
стикеры в вк
нажми, чтобы узнать больше
августа 14: 23
найти все значения а при которых сумма квадратов корней уравнения х^2+(2-а)х-а-3=0 будет наименьшей
ответ или решение1
архипова вера
рассмотрим корни уравнения: х^2 + (2 - а) * х - (а-3) = 0, и применим теорему bиета:
х1 + х2 = -(2 - а); х1 * х2 = - а - 3.(1)
найдём искомые (х1² + х2²) = (х1 + х2)² - 2 * х1 * х2.
все эти величины определены в (1). подставим значения.
х1² + х2² = [-(2 - а)]² - 2 * (- а - 3) = (2 - а)² + 2 * а + 6 = 4 - 4 * а + а² + 2 * а + 6 = а² - 2 * а + 10. (2)
в полученном выражении выделим полные квадрат.
тогда (2) примет вид: а² - 2 * а * 1 + 1² + (10 - 1) = (а - 1)² + 9. (3). проанализируем выражение (3), (а - 1)²> 0 при любых а и минимально при а = 1.
объяснение: