1. ДАНО Y = x² - 6*x + 5 - уравнение параболы. НАЙТИ Ymin = ? - наименьшее значение. РЕШЕНИЕ Чтобы найти координаты вершины параболы преобразуем уравнение к виду Y=(x - a)² +b Y = (x² - 2*3x + 9) - 9 + 5 = (x-3)² - 4. Вершина параболы: А(3;-4) Ay = - 4 - наименьшее значение - ОТВЕТ Точки пересечения с осями координат можно получить решением квадратного уравнения. D = 16, x1 = 1, x2 = 5 Рисунок к задаче в приложении. 2. График параболы на рис. 2. Корни - х1 = - 1б х2 = 3, вершина А(1;4). Но для решения задачи график не обязателен. Достаточно подставить значение У=3 и решить квадратное уравнение. 3 = - x² + 2*x + 3 - x² + 2*x = - x*(x-2) = 0 ОТВЕТ: х1 = 0, х2 = 2 Рисунок в приложении. 3. Каноническое уравнение параболы: Y= (x-a)² + b. Координаты вершины такой параболы: Ах = - а, Ау = b. Y = (x-3)² - уравнение параболы - дано. Вершина с координатами: А(3;0), и ветви параболы - вверх.∫ Рисунок в приложении.
в низу
Объяснение:
1. Перетворіть вираз з(ь – 6, 5) у такий, що тотожно дорівнює йому. 2. Запишіть вираз т – (6-n+b) без дужок. 3. Спростіть вираз 15-(a-4). 4. Розкрийте дужки й зведіть подібні доданки у виразі 4b – (76 + 2). 5. Виконайте тотожне перетворення виразу 2,5 (2k + 4а – 2). 6. Спростіть вираз 2(a+1) +а та знайдіть його значення, якщо a=1. 7. Доведіть тотожність (2x +1)-(1-2x) = 4х. 8. Зведіть подібні доданки у виразі -4+32+62. 9. Спростіть вираз -(-5)-(-y). 10. Доведіть, що вираз 7(a-b)+7(b – а) тотожно дорівнює 0. 11. Доведіть тотожність -(2-(-x)+2+x = 0. 12. Доведіть, що сума виразів 13c + 3 і 2c +3 ділиться на