1) Если числитель и знаменатель дроби умножить на 5, то дробь не изменится. Пусть - некая дробь. Умножим числитель и знаменатель на 5:
Как видим, пятёрки сокращаются, дробь не меняется. Утверждение верно.
2) Если знаменатель положительной дроби увеличить в 2 раза,то дробь уменьшится в 2 раза. Пусть - некая дробь. Умножим знаменатель на 2:
Как видим, дробь уменьшилась в 2 раза. Утверждение верно.
3) При умножении двух нецелых чисел всегда получается нецелое число. Чтобы опровергнуть данное утверждение, достаточно привести один опровергающий пример:
Как видим на примере, при умножении двух нецелых чисел мы получили целое число. Поэтому утверждение неверно.
4) Если к числителю и знаменателю дроби прибавить 2 то дробь не изменится. Прибавим к числителю и знаменателю 2:
Чтобы дробь не изменилась должно выполняться следующее условие:
Итак, мы видим, чтобы дробь не изменилась, числитель д.б. равен знаменателю. Иначе дробь изменится. Поэтому в общем случае утверждение неверно.
Пусть скорость I группы V₁ км/ч , скорость II группы V₂ км/ч . 1-я часть задачи : I группа : Время в пути 6 часов , расстояние до места встречи 6V₁ км. II группа: Время в пути на 2 часа меньше ⇒ 6 - 2 = 4 часа ; расстояние до места встречи 4V₂ км Итого расстояние : 6V₁ + 4V₂ = 48 км
2 -я часть задачи: I группа : время в пути 8 часов , расстояние до места встречи 8V₁ км . II группа: время в пути на 6 часов меньше ⇒ 8 - 6 = 2 часа , расстояние 2V₂ км Итого расстояние : 8V₁ + 2V₂ = 48 км
Пусть
Как видим, пятёрки сокращаются, дробь не меняется. Утверждение верно.
2) Если знаменатель положительной дроби увеличить в 2 раза,то дробь уменьшится в 2 раза.
Пусть
Как видим, дробь уменьшилась в 2 раза. Утверждение верно.
3) При умножении двух нецелых чисел всегда получается нецелое число.
Чтобы опровергнуть данное утверждение, достаточно привести один опровергающий пример:
Как видим на примере, при умножении двух нецелых чисел мы получили целое число. Поэтому утверждение неверно.
4) Если к числителю и знаменателю дроби прибавить 2 то дробь не изменится.
Прибавим к числителю и знаменателю 2:
Чтобы дробь не изменилась должно выполняться следующее условие:
Итак, мы видим, чтобы дробь не изменилась, числитель д.б. равен знаменателю. Иначе дробь изменится. Поэтому в общем случае утверждение неверно.