1,56 и 1,3. Как видишь в делители есть запятая (1,3), а значит мы должны от нее избавиться. Это для того что бы удобнее было нам разделить. Просто так мы ее никуда не уберем, но мы можем сделать так: переносим запятую в делители до целого числа, т.е было 1,3, переносим на один в право, становится 13 (1,3 стало 13). Но и на этом не все. Как только мы перенесли запятую в делители, мы должны перенести ее и в делимом, при чем нас только в чисел в право, на сколько чисел мы перенесли в делители, т.е. в делители мы перенесли на одно число вправо, значит и в делимом мы тоже переносим на одно число в право. Теперь можем делить, т. к наш делитель целое число. Получаем 15,6:13= 1,2.
дана функция у=2х3+6х2-1 найти промежутки возрастания и убывания
используем необходимое и достаточное условие монотонности функции: y=f(x) возрастает на промежутке (a,b)⇔ когда производная y¹=f¹(x) больше нуля , y¹>0; y=f(x) убывает на промежутке (a,b)⇔ когда производная y¹=f¹(x) меньше нуля , y¹<0.
Найдем производную у¹=(2х³+6х²-1)¹=6x²+12x и решим неравенство 6х²+12х>0
1) 2а + с + 2а² + ас = 2а(1+а) + с(1+а) = (1+а)(2а+с)
2) 2х² - 3х + 4ах - 6а = 2х(х+2а) - 3(х+2а) = (х+2а)(2х-3)
3) х²у² + ху + аху + а = ху(ху + 1) + а(ху+1) = (ху+1)(ху+а)