Рассмотрим первое уравнение:
Дробь равна нулю, когда числитель равен нулю (то есть каждый множитель может быть равным нулю), а знаменатель не равен нулю:
Ограничение на x взялось из-за корней. Теперь достаточно построить каждый график совокупности в заданных пределах.
Второе уравнение представляет собой прямую, смещённую по оси Oy.
На рисунке красным цветом начерчен график первого уравнения, зелёным — вариации второго. По рисунку видно, что система имеет два решения, если прямая проходит через точку (-2; -4) (не включая такое значение a) и так пробегает до точки (-2; 3), проходит через точку (5; 3), проходит через точку (6; 3) и так пробегает до точки (6; 4) (не включая).
Найдём ключевые значения параметра:
В точке (-2; -4): -2-4-a = 0 ⇔ a = -6;В точке (-2; 3): -2+3-a = 0 ⇔ a = 1;В точке (5; 3): 5+3-a = 0 ⇔ a = 8;В точке (6; 3): 6+3-a = 0 ⇔ a = 9;В точке (6; 4): 6+4-a = 0 ⇔ a = 10.Учитывая рассуждения, получаем ответ.
ответ:
1) c¹⁹
2) 4b²-13ab-12a²
3) 16x²-56xy+49y²
4) -162a¹⁴b⁶
5) -1+8+25-49= -17
6) (2y-8)²
7) y=-17-5x
8) 6,2
9) -5,8x+29
10) 2