В решении.
Объяснение:
1. Представь сумму c−1/8 + c+1/16 в виде алгебраической дроби :
(c−1)/8 + (c+1)/16 = [2*(c-1)+(c+1)] / 16 =
=(2c-2+c+1) / 16 =
=(3c-1)/16.
2. Выполни вычитание 3/c(c+6) − 13/y(6+c).
3/c(c+6) − 13/y(6+c) =
общий знаменатель су(с+6):
=(3у-13с)/су(с+6).
3. Преобразуй выражение 10−2/t в дробь.
10−2/t =
общий знаменатель t:
=(10t-2)/t.
4. Выполни сложение алгебраических дробей c+2/(2−c)² + 2/2c−c².
(c+2)/(2−c)² + 2/2c−c² =
=(c+2)/(2−c)² + 2/c(2-c) =
общий знаменатель c(2-с)²:
=[c*(c+2) + 2(2-c)] / c(2-с)² =
=(c²+2c+4-2c) / c(2-c)² =
=(c²+4)/c(2-c)².
Объяснение:
c^2 - 16 - (c^2 - 16c + 64) = 16c - 16 - 64 = 16c - 80
c = 3
16 * 3 - 80 = 48 - 80 = -32