(m) отрицательным быть не может ---> для m < 0 решений НЕТ для m >= 0 возможны два варианта: x^2 + 3x + (4-m) = 0 или x^2 + 3x + (4+m) = 0 D= 9-4(4-m) = 4m - 7 D= 9-4(4+m) = -4m - 7 условие существования корней D ≥ 0 4m - 7 ≥ 0 -4m - 7 ≥ 0 для m < 7/4 корней нет для m > -7/4 корней нет для m ≥ 7/4 x₁;₂ = (-3 +-√(4m-7)) / 2 для m < 7/4 корней НЕТ
Объяснение:
сложим эти два уравнения и преобразуем по формуле куба разности:
Для простоты вычислений введём константу С
C≈0,4142
Из последнего выражения имеем следующие тождества
Подставляем x в первое уравнение
В последнее С³ подставим его значение, чтобы сократить семёрку.
Теперь решаем обычное квадратное уравнение
Тут получается что дискриминант отрицательный и корней нет.
Вариант второй, графический
из первого уравнения получаем график функции
А из второго
Строим графики.
Видим, что точек пересечения нет.
Графики стремятся приблизится друг к другу, но не пересекаются