М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Даринёк
Даринёк
03.02.2020 15:57 •  Алгебра

.(1.высота cd прямоугольнова треугольника abc делит гипатинузу ab на части ad=16см и bd=9см. докажите, что треугольник acd приблизительно равин треугольнику cbd и найдите высату cd. 2.точки m и n лежат на сторонах ac и bc треугольник abc ;
ac=16см, bc=12см, cm=12см, cn=9см. докажите, что mn паролельна ab.).

👇
Ответ:
PolyMoly1
PolyMoly1
03.02.2020

Высота СД разделила треугольник на 2 подобных треугольника АСД и СВД, т.к. у них в каждом есть прямой угол. Это Угол АДС и угол СДВ. Угол САД= Углу ДСВ, как углы с соответственно перпендикулярными сторонами. Треугольники подобны по двум углам. Высота в прямоугольном треугольнике есть среднее пропорциональное между проекциями катетов на гипотенузу. Это следует из пропорции СД: ДВ=АД: СД   СД*СД= АД*ДВ   =16*9=144 Т.е. СД= 12 см.

2. В треугольниках СМN и АВС есть общий угол С. Поверим пропорциональность сторон АС:СМ= 16:12=4:3  СВ:СN=12:9=4:3. Отношения сторон равны, значит треугольники подобны по двум пропорциональным сторонам и углу между ними. По теореме о пропорциональных отрезках АВ параллельна MN.

4,5(74 оценок)
Открыть все ответы
Ответ:
kapitoshka202
kapitoshka202
03.02.2020
p(x)=a_{1}x^4+a_{2}x^3+a_{3}x^2+a_{4}x+a_{5}\\
 x=\sqrt{x_{1}}\\
 x=\sqrt{x_{1}}+b\\
 x=\sqrt{x_{1}}+2b\\
 x=\sqrt{x_{1}}+3b\\\\
 p(x)+a=a_{1}x^4+a_{2}x^3+a_{3}x^2 + a_{4}x+a_{5}+a\\
y=\sqrt{y_{1}}\\
y=\sqrt{y_{2}}\\
y=\sqrt{y_{3}}\\
y=\sqrt{y_{4}}\\\\ 




По теореме Виета для уравнение четвертой степени получаем соотношение   
4\sqrt{x_{1}}+6b = -\frac{a_{2}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+3b)+(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+...=\frac{a_{3}}{a_{1}}\\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)+\sqrt{x_{1}}(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b).........=-\frac{a_{4}}{a_{1}} \\ \sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)=\frac{a_{5}}{a_{1}}\\\\ \sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}=-\frac{a_{2}}{a_{1}}\\
\sqrt{y_{1}y_{2}}+\sqrt{y_{1}y_{3}}+\sqrt{y_{1}y_{4}}+\sqrt{y_{2}y_{3}}...+ = \frac{a_{3}}{a_{1}} \\ \sqrt{y_{1}y_{2}y_{3}}+\sqrt{y_{1}y_{2}y_{4}} [/tex]        

\left \{ {{4\sqrt{x_{1}}+6b=\sqrt{y_{1}}+\sqrt{y_{2}}+\sqrt{y_{3}}+\sqrt{y_{4}}
 } \atop {\sqrt{x_{1}}(\sqrt{x_{1}}+b)(\sqrt{x_{1}}+2b)(\sqrt{x_{1}}+3b)-\sqrt{y_{1}y_{2}y_{3}y_{4}}=a} \right. \\

Учитывая условия что коэффициенты все выражаются в радикалах , то  сумма всех корней выраженные в радикалах есть число радикальное . 
  По третьем  равенству первой системы  \sqrt{x_{1}x_{2}x_{3}}=Rad  , то произведение корней так же число радикальное , откуда с последних двух идет верное равенство
4,5(22 оценок)
Ответ:
{х+7/3 – у-8/5=3                {5(х+7)-3(у-8)=3*15                 {5х+35-3у+24=45
{х+5/4 + у+9/3=5               {3(х+5)+4(у+9)=12*5               {3х+15+4у+36=60

{5х-3у=45-35-24    {5х-3у=-14 домножаем обе части на 4   {20х-12у=-56
{3х+4у=60-15-36   {3х+4у=9 домножаем обе части на 3     {9х+12у=27
                                                                                     
                                                                                       29х=-29
                                                                                       х=-1
-5-3у=-14
-3у=-14+5
-3у=-9
у=3
ответ: (-1;3)
4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ