1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3
У косинуса знак не выносится, значит, просто меняем.
4sin^3 x = cos (5п\2 - x)
Отбрасываем целую часть.
4sin^3 x = cos (п\2 - x)
4sin^3 x = sin x
sinx * (4sin^2 x - 1) = 0
1) sinx = 0
x = пn
Выбираем корни из промежутка:
3п\2 <= пn <= 5п\2
3п <= 2пn <= 5п
3 <= 2n <= 5
1.5 <= n <= 2.5
n = 2, x = 2п
2) sinx = 1\2
x = (-1)^n * п\6 + пn
3п\2 <= п\6 + пn <= 5п\2
9п <= п + 6пn <= 15п
8п <= 6пn <= 14п
8 <= 6n <= 14
4\3 <= n <= 7\3
n = 2, x = п\6 + 2п = 13п\6
3п\2 <= -п\6 + пn <= 5п\2
9п <= -п + 6пn <= 15п
10п <= 6пn <= 16п
10 <= 6n <= 16
5\3 <= n <= 8\3
n = 2, x = -п\6 + 2п = 11п\6
3) sinx = -1\2
x = (-1)^(n+1) * п\6 + пn
Те же корни, что и sinx = 1\2
ответ: 11п\6, 13п\6, 2п