(x+50)/x>=m
(x+50-mx)/x >= 0
1) {x(1-m) +50>=0 {x >= 50/(m-1) Теперь найдём значение параметра m,
{ x >= 0 { x >= 0 при котором наибольшее положительное
решение неравенства равно 10.
50/(m-1) = 10 > 50 = 10m - 10, 10m = 60, m = 6
2) {x(1-m) +50 <0 Эту систему не решаем так как здесь Х принимает только
{ x < 0 отрицательные значения.
ответ. m = 6
Задача №2. Пусть Х - скорость течения реки, тогда скорость катера по течению равна (8+Х) км/ч, а против течения (8-Х) км/ч. Тогда на путь по течению он затратил 15/(8+Х) ч, а на путь против течения 15/(8-Х) ч.
Т. к. по условию на весь путь туда и обртно затрачено 4 ч, составим уравнение:
15/(8+Х) + 15/(8-Х) = 4 (приводим к общему знаменателю (8+Х) *(8-Х) = 8^2 - Х^2 = 64 - Х^2 )
(120 + 15Х + 120 - 15Х - 4(64 +Х^2) ) /64 - Х^2 = 0
система:
120 + 15Х + 120 - 15Х - 4(64 +Х^2) = 0
64 - Х^2 не равоно 0
Решаем первое ур-ние системы:
240 -256 + 4Х^2 = 0
4Х^2 = 16
Х^2 = 4
Х = 2
Объяснение:
5x-7*(-2)=10
5x+14=10
5x=-4
x=-4/5