М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
derevnina450
derevnina450
28.11.2022 02:49 •  Алгебра

Одновременно подбрасываются два шестигранных игральных кубика. Запишите исходы для события «Число выпавших очков в сумме равно 5».

👇
Открыть все ответы
Ответ:

1)  Множество точек, удовлетворяющих неравенству  \bf x-4y\geq 8 ,

\bf 4y\leq x-8\ \ ,\ \ y\leq \dfrac{x}{4}-2  ,   лежат ниже прямой  \bf y=\dfrac{x}{4}-2   .

Множество точек, удовлетворяющих неравенству  \bf (x-1)^2+y^2\leq 4

лежат внутри окружности с центром в точке ( 1 : 0) , радиуса  R=2 .

2) Множество решений системы неравенств изображено на рисунке.

Область заштрихована . Это полоса между прямыми х= -2  и  х=2 , расположенная выше прямой у=3 . Сами прямые в область не входят, так как неравенства имеют строгие знаки .

\left\{\begin{array}{l}\bf |\, x\, | < 2\\\bf y 3\end{array}\right\ \ \left\{\begin{array}{l}\bf -2 < x < 2\\\bf y 3\end{array}\right  

3)  Фигура, изображённая на рисунке, может быть задана с системы неравенств   \left\{\begin{array}{l}\bf y\leq 4\ ,\\\bf y\geq x^2\end{array}\right .      

Неравенство  \bf y\leq 4  описывает множество точек, лежащих ниже прямой у=4 .

Неравенство  \bf y\geq x^2  описывает множество точек, расположенных внутри параболы  \bf y=x^2 .  Это можно определить, если рассматривать точку , которая находится внутри параболы , например, точка (1;2) , и точку с той же абсциссой х=1 , лежащую на параболе, имеющую ординату  у=1²=1 . Сравним ординаты этих точек: 2>1 . Значит ординаты точек, находящихся внутри параболы, больше , чем ординаты точек, лежащих на параболе . Отсюда и получаем  у≥х²  .


Нужно решить все 3 задания с полным решением и ответами. Очень
Нужно решить все 3 задания с полным решением и ответами. Очень
Нужно решить все 3 задания с полным решением и ответами. Очень
4,4(79 оценок)
Ответ:
vladdancer
vladdancer
28.11.2022

Давайте упростим выражение шаг за шагом:

-tg 132°

Используя тождество, что tg(x) = -tg(x + 180°), мы можем переписать это как tg(-48°):

tg 132° = - tg (132° + 180°) = - tg 312° = - tg (-48°) = tg 48°

ctg228°

Используя тождество, что ctg(x) = ctg(x + 180°), мы можем переписать это как ctg48°:

ctg 228° = ctg (228° + 180°) = ctg 48°

cos 115°. cos 245°

Используя тождество, что cos(x) = cos(360° - x), мы можем переписать это как cos(245°).cos(115°):

cos 115°. cos 245° = cos (360° - 245°).cos(115°) = cos 115°.cos 115° = cos2 115°

ctg197° . ctg253°

Используя тождество, что ctg(x) = 1/tg(x), мы можем переписать это как:

ctg197° . ctg253° = (1/tg197°). (1/tg253°) = 1/(tg197° . tg253°)

g155°ig295°

Используя тождество, что g (x) = 1 /sin(x), мы можем переписать это как 1 /sin(155°).sin(295°):

g 155°ig295° = 1/sin(155°).sin(295°)

Теперь мы можем подставить упрощенные выражения обратно в исходное выражение и упростить еще больше:

tg 132° + ctg228° - cos 115°. cos 245° ctg197° . ctg253° +1 g 155°ig295°

= tg 48° + ctg 48° - cos2 115° - 1/(tg197° . tg253°) + 1/(sin(155°).sin(295°))

Следовательно, упрощенное выражение таково: tg 48° + ctg 48° - cos2 115° - 1/(tg197° . tg253°) + 1/(sin(155°).sin(295°))

Объяснение:

4,8(42 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ