из условия вытекает, что в равнобедренной трапеции АВСД боковые стороны и меньшее основание равны АВ=ВС=СД. Также одинаковы углы, прилежащие к большему основанию ДАВ=СДА=70 гр.
Отсюда вытекает, что углы АВС=ВСД=110 гр.
S трапеции=1/2(a+b)h, где а - АД, b - ВС, h - ВЕ (высота)
Р=АВ+ВС+СД+АД
для того, чтобы найти АВ=ВС=СД проводим диагональ АС.
Т.к. АВ=ВС - равнобедренный треугольник, следовательно углы САВ=АСВ=35 гр. Следовательно, АС является биссектрисой угла ДАВ, отсюла угол САД=35 гр. и, соответственно, АСД=75 гр. По формуле синусов находи АС=АД*sinСДА/sinАСД=20*sin70/sin75=20*0,9397/0,9659=19,4575
По формуле косинусов находим стороны АВ=ВС=СД=АС/2*cosАВЕ=19,4575/2*0,8192=11,8759
Находим периметр Р=АВ+ВС+СД+АД=55,6277
Теперь необходимо найти высоту ВЕ. Получается прямоуголоный треугольник с углами ВАЕ=70 гр., АЕВ=90 гр. и АВЕ=30 гр. По формуле косинусов находим ВЕ=АВ*cosАВЕ=11,8759*0,9397=11,1598
находим площадь: S трапеции=1/2(АД+ВС)*ВЕ=177,8643
Решение:
Пусть длина всего пути равен х км, а путь по реке - км. Скорость по течению равна (24+6=30)км/ч, а против течения - (24-6=18) км/ч. Так как катер дошёл до середины и обратно вернулся, то на весь путь он затратил что составляет 3 часа - 20 мин = 3 ч - 20/60 ч = 8/3.
Составим уравнение
ответ: 68 км.