М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MrDoktordhdhdh
MrDoktordhdhdh
09.02.2022 00:59 •  Алгебра

Найдите целое решение неравенства

👇
Открыть все ответы
Ответ:
Катттття
Катттття
09.02.2022
Многочленом называется сумма одночленов.

Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .

Если многочлен состоит из двух членов, то его называют двучленом:

5xy – 7ab ; y+5b; 7a+13a.

Если из трех – трехчленом:

5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .

Одночлен считают многочленом, состоящим из одного члена:

2x ; 3 ; 0 ; 7xy.
Подобные слагаемые в многочлене называются подобными членами
многочлена, а приведение подобных слагаемых в многочлене –
приведением подобных членов многочлена. Например:

5xy – 7xy+5 = – 2xy+5 ;

17ay– 7ay+5ay +a = 15ay+a .

Если все одночлены в многочлене приведены к стандартному виду и
среди них нет подобных, то говорят, что это многочлен стандартного вида.

Многочлен нестандартный вид стандартный вид
Любой многочлен можно привести к стандартному виду.
4,7(15 оценок)
Ответ:
GorunovaSasha
GorunovaSasha
09.02.2022
Простейшими тригонометрическими неравенствами называются неравенства вида

sinx\vee a,

cosx\vee a,

tgx\vee a,

ctgx\vee a,

где \vee – один из знаков <,\;>,\;\leq,\;\geq, a\in R.

Вы должны прежде, конечно, хорошо ориентироваться в тригонометрическом круге и уметь решать простейшие тригонометрические уравнения (часть I, часть II).

круг тригонометрический

Кстати, умение решать тригонометрические неравенства может пригодиться, например, в заданиях №11 ЕГЭ по математике.

Сначала мы рассмотрим простейшие тригонометрические неравенства с синусом и косинусом. Во второй части статьи – с тангенсом, котангенсом.

Пример 1.
Решить неравенство: cosx<\frac{1}{2}.

Решение:

Отмечаем на оси косинусов \frac{1}{2}.

Все значения cosx, меньшие \frac{1}{2}, – левее точки \frac{1}{2} на оси косинусов.

87

Отмечаем все точки (дугу, точнее – серию дуг) тригонометрического круга, косинус которых будет меньше \frac{1}{2}.

ен

Полученную дугу мы проходим против часовой стрелки (!), то есть от точки \frac{\pi}{3} до \frac{5\pi}{3}.

Обратите внимание, многие, назвав первую точку \frac{\pi}{3}, вместо второй точки \frac{5\pi}{3} указывают точку -\frac{\pi}{3}, что неверно!

Становится видно, что неравенству удовлетворяют следующие значения x:

\frac{\pi}{3}+2\pi n
Следите за тем, чтобы «правая/вторая точка» была бы больше «левой/первой».

Не забываем «накидывать» счетчик 2\pi n,\;n\in Z.

Вот так выглядит графическое решение неравенства не на тригонометрическом круге, а в прямоугольной системе координат:

тригонометрические неравенства

Пример 2.
Решить неравенство: cosx\geq -\frac{\sqrt2}{2}.

Решение:

Отмечаем на оси косинусов -\frac{\sqrt2}{2}.

Все значения cosx, большие или равные -\frac{\sqrt2}{2} – правее точки -\frac{\sqrt2}{2}, включая саму точку.

Тогда выделенные красной дугой аргументы x отвечают тому условию, что cosx\geq -\frac{\sqrt2}{2}.

г-\frac{3\pi}{4}+2\pi n\leq x\leq \frac{3\pi}{4}+2\pi n,\; n\in Z.

Пример 3.
Решить неравенство: sinx\geq -\frac{\sqrt3}{2}.

Решение:

Отмечаем на оси синусов -\frac{\sqrt3}{2}.

Все значения sinx, большие или равные -\frac{\sqrt3}{2}, – выше точки -\frac{\sqrt3}{2}, включая саму точку.

67

«Транслируем» выделенные точки на тригонометрический круг:

6 -\frac{\pi}{3}+2\pi n \leq x\leq \frac{4\pi}{3}+2\pi n,\;n\in Z

Пример 4.
Решить неравенство: sinx<1.

Решение:

Кратко:

л

\frac{\pi}{2}+2\pi n
или все x, кроме \frac{\pi}{2}+2\pi n,\;n\in Z.

Пример 5.
Решить неравенство: sinx\geq 1.

Решение:

Неравенство sinx\geq 1 равносильно уравнению sinx=1, так как область значений функции y=sinx – [-1;1].

78н

x=\frac{\pi}{2}+2\pi n,\;n\in Z.

Пример 6.
Решить неравенство: sinx<\frac{1}{3}.

Решение:

Действия – аналогичны применяемым в примерах выше. Но дело мы имеем не с табличным значением синуса.

Здесь, конечно, нужно знать определение арксинуса.

89

\pi -arcsin\frac{1}{3}+2\pi n
Если не очень понятно, загляните сюда –>+ показать
4,7(54 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ