Решение Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч). Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч); а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее, то имеем уравнение такого вида: 20/x – 20/(x + 2) = 1/3 20/x – 20/(x + 2) - 1/3 = 0 умножим на 3 60/x – 60/(x + 2) – 1 = 0 60(х+2) - 60х – x*(x + 2) = 0 х² + 2x – 120 = 0 D=b² - 4ac = 4 + 4*1*120 = 484 x= (- 2 + 22)/2 = 10 10 (км/ч) - скорость первого лыжника 10 + 2 = 12 (км/ч) — скорость второго лыжника ответ: 10 км/ч; 12 км/ч
Решается с системы уравненийпервой уравнение это большая сторона х минус меньшая сторона у получим 14второе уравнение по признаку диагоналей прямоугольника , получим 34 в квадрате умноженное на 2 =равно сумме квадратов всех сторон прямоугольника () , теперь решим их:х-у=142sqr(x)+2sqr(y)=sqr(34)*2 (сократим это уравнение на два)выведем x:x=14+ysqr(x)+sqr(y)=1156подставим во второе уравнение выражение xx=14+ysqr(14+y)+sqr(y)=1156 (решим его)196+28y+sqr(y)+sqr(y)-1156=02sqr(y)+28y-960=0 (сократим на 2)1sqr(y)+14y-480=0D=sqr(14)-4*1*(-480)=196+1920=2116=sqr(46)y1=-14+46/2*1=16y2=-14-46/2*1=-30 (не цдов усл задачи сторона не может быть отрицательной)найдем х подставив в формулу y:х=14+16=30смответ : стороны прямоугольника равны 30 и 16 см
Пусть скорость первого лыжника будет х (км/ч). Тогда скорость второго лыжника (х+2) (км/ч).
Время первого лыжника 20/х (км/ч), а второго 20/(х+2) (км/ч);
а так как второй расстояние на 20мин, т.е. на 1/3 часа быстрее,
то имеем уравнение такого вида:
20/x – 20/(x + 2) = 1/3
20/x – 20/(x + 2) - 1/3 = 0 умножим на 3
60/x – 60/(x + 2) – 1 = 0
60(х+2) - 60х – x*(x + 2) = 0
х² + 2x – 120 = 0
D=b² - 4ac = 4 + 4*1*120 = 484
x= (- 2 + 22)/2 = 10
10 (км/ч) - скорость первого лыжника
10 + 2 = 12 (км/ч) — скорость второго лыжника
ответ: 10 км/ч; 12 км/ч