Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
f'(x)=1/(5x+4) * (5x+4)'= 1/(5x+4) *5= 5/(5x+4).
f'(2)=5/(5*2+4)=5/14.
2.lg(3x+4)=2lg x
lg(3x+4)=lgx² (двойка идет в степень)
Так как логарифмы с одинаковым оснаванием и они равны, то можно прировнять подлогарифмические выражегия
3х+4=х²
х²-3х-4=0
По ьеореме Виета
х1х2=-4
х1+х2=3
х1=-1 х2=4
ОДЗ х>0 и 3х+4>0, т.е
х>0 и х>-4/3, т.е просто х>0.
Тогда х1 нас не удовлетворяет.
ответ: 4
3. lg^(2) x-3lg x = -2
Вводим замену lgx= t
t²-3t+2=0
По т. Виета
t1•t2=2
t1+r2=3
t1=1
t2=2, возвращаемся к замене
1. lgx=1
(lg это десятичный логарифм, т.е. основание у него 10, еще мы знаем что логарифм у которого основание равно подлогарифмическому выражению равен 1)
lgx=lg10 (мы 1 меняем на lg10)
x=10
2. lgx=2
lgx=2lg10
lgx=lg10²
x=10²
x=100.
ответ: 10; 100.