ответ: L=1+1/2*ln(3/2)≈1,2.
Объяснение:
Искомая длина L=∫√[1+(y')²]*dx с пределами интегрирования a=√3 и b=√8. В данном случае y=ln(x), поэтому y'=1/x и √[1+(y')²=1/x*√(x²+1).
1. Найдём первообразную F(x)=∫1/x*√(x²+1)*dx. Под знаком интеграла находится так называемый биномиальный дифференциал, то есть выражение вида x^m*(a+b*x^n)^p*dx. В нашем случае m=-1, a=b=1, n=2 и p=1/2. Так как число q=(m+1)/n-1=-1 - целое, то первообразную F(x) можно найти в конечном виде. Обозначим знаменатель дроби p через v: в нашем случае v=2. Применим подстановку t=(a+b*x^n)^(1/v), то есть в нашем случае положим t=√(x²+1). Отсюда t²=x²+1, x²=t²-1, x=√(t²-1), dx=t*dt/√(t²-1) и тогда искомый интеграл примет вид ∫t²*dt/(t²-1)=∫dt+∫dt/(t²-1)=t+1/2*ln/(t-1)/(t+1)/. Таким образом, вместо первообразной F(x) найдена первообразная F1(t)=t+1/2*ln/(t-1)/(t+1)/.
2. Для нахождения L, во избежание возврата к переменной x, перейдём к новым пределам интегрирования a1 и b1 по формулам: a1=√(a²+1)=2 и b1=√(b²+1)=3. Подставляя в выражение для первообразной F1(t) эти пределы интегрирования, находим L=F1(3)-F1(2)=3+1/2*ln(1/2)-[2+1/2*ln(1/3)]=1+1/2*ln(3/2).
1 Центр(2;-4) , радиус равен 2
2 центр имеет координаты (-1+3)/2=1;у=(3+3)/2=3, т.е. центр (1;3), а радиус равен √(16+0²)/2=4/2=2
3. с осью оу х=0, у=3, это точка (0;3), с осью ох у=0, х=12, это точка (12;0)
подставим у =х-2 в первое уравнение х+4у-12=0 . получим
х+4х-8-12=0, откуда 5х=20, х=4, тогда у=4-2=2.
итак. получили точку пересечения (4;2)
4. подставим у=-х+4 в первое уравнение окружности. получим
(х-2)² + (-х+4-4)² =2 ⇒х²-4х+4+х²=2; 2х²-4х+2=0; х²-2х+1=0; ⇒(х-1)²=0, х=1, у=4-1=3. искомая точка (3; 1)