Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
для этого еблана в Задача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює решта
Объяснение:
Задача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює рештаЗадача 1. Дві прямі АВ і СД перетинаються в
точці О, утворюють кут ДОВ, який дорівнює 40
градусів. Визначте величину решти кутів, що
утворилися при перетині прямих АВ і СД.
Задача 2. Один з кутів, утворених при перетині
двох прямих, прямий. Чому дорівнює решта
Система уравнений это некая такая система, где переменные в разных уравнения системы равны, что означает, что некое число, являющейся ответом к первому уравнение также является ответом для второго, а решить систему это значит найти такие значения, которые будут подходить к двум уравнениям, графически ответом будет точка пересечения графиков функций, иначе их можно решать двумя другими методом сложения и методом подставки, в зависимости от ситуации, нужно выбирать более удобный в данной ситуации, можно заметить, что если умножить обе части второго уравнения на минус два, мы избавится от x в уравнении, в итоге получится уравнение с одной переменной, которое можно решить, найдя y
Зная y, можно найти и x
Это и есть метод сложения
В методе постановки, нужно выразить любую удобную переменную, в той же системе можно заметить, что x выражается просто.
Решение всеми 3 методами не войдёт на 1 вложение, а как сделать более двух вложений, я не знаю. Поэтому решение двух задач будет наиболее простым и только одним методом. Поскольку две задачи также не вошли на 1 лист решение задачи будет здесь
Решение на фотографии
Задача 2
Возьмём цену ластика за х, а цену альбома за у, и составим систему уравнения, где на примере видно, что у и х заведомо равны, (х=х и у=у) Также стоит обратить внимание, на то, что х имеет коэффициент 1, от этого и будем отталкиваться.
3y+2x=66
2y+x=43
Домножим второе уравнение системы на минус два, тогда
Уравнение примите вид - 4у-2х=-86
Методом сложения получим уравнение
-2у=-20
Где y=10
Подставим у в любое из двух уравнений и решим его, тогда
2*10+х=43
20+х=43
х=23
Подставив эти значение в верхнее уравнение, получаем, что х и y найдены правильно, значит альбом стоит 20 рублей, а ластик 23