48.8%.
Объяснение:
Обозначим через х первоначальную стоимость товара.
Найдем стоимость товара после первого снижения цены на 20%:
х - (20/100)х = х - (2/10)х = х - 0.2х = 0.8х.
Найдем стоимость товара после второго снижения цены на 20%:
0.8х - (20/100) * 0.8х = 0.8х - (2/10) * 0.8х = 0.8х - 0.2 * 0.8х = 0.8х - 0.16х = 0.64х.
Найдем стоимость товара после третьего снижения цены на 20%:
0.64х - (20/100) * 0.64х = 0.64х - (2/10) * 0.64х = 0.64х - 0.2 * 0.64х = 0.64х - 0.128х = 0.512х.
Следовательно, по сравнению с первоначальной цена товара снизилась на 100 * (х - 0.512х) / х = 100 * 0.488 = 48.8%.
ответ: цена товара снизилась на 48.8%.
а) х² - х + 1/4
х может принимать любые действительные значения.
б) (х+1)/(х²+9) + 2х
Знаменатель дроби не должен равняться нулю.
Рассматриваем знаменатель х²+9 и видим, что он всегда больше нуля, поэтому опять:
х может принимать любые действительные значения.
в) 14\3х-6
Знаменатель дроби не должен равняться нулю.
Рассматриваем знаменатель 3х - 6 ≠ 0 ⇒ 3х ≠ 6 ⇒ х ≠ 2
х может принимать любые действительные значения, кроме х = 2
г) х²-3/(3-2х)(х+5)
Рассматриваем знаменатель
1) 3 - 2х ≠0 ⇒ -2х ≠ -3 ⇒ х ≠ 1,5
2) х+5 ≠ 0 ⇒ х ≠ -5
х может принимать любые действительные значения, кроме х = 1,5 и х = -5
д)х²+1/х(х+3)
Рассматриваем знаменатель
1) х ≠0
2) х+3 ≠ 0 ⇒ х ≠ -3
х может принимать любые действительные значения, кроме х = 0 и х = -3
е) 2х/(х-1)²·(х²-4)
Рассматриваем знаменатель
1) х - 1 ≠ 0 ⇒ х ≠ 1
2) х² - 4 ≠ 0 ⇒ х² ≠ 4 ⇒ х ≠ -2 и х ≠ 2
х может принимать любые действительные значения, кроме х = 1, х = -2 и х = 2