Спонукати коло, радіус которого дорівнюе 34 мм. Проведіть у ньом діаметр АВ та хорду МN. Проведіть за до гою Косинцев дотичність до кола, что проходити через точку А.
Раскрываем скобки. Для этого, значение перед скобками умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. То есть получаем:
2 * 1 - 2 * sin ^ 2 x = 1 - sin x;
2 - 2 * sin ^ 2 x = 1 - sin x;
Перенесем все значения выражения на оду сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
2 * sin ^ 2 x - sin x + 1 - 2 = 0;
2 * sin ^ 2 x - sin x - 1 = 0;
1) sin x = 1;
x = pi/2 + 2 * pi * n, где n принадлежит Z;
2) sin x = - 1/2;
x = (- 1) ^ n * 7 * pi/6 + pi * n, где n принадлежит Z.
1) Ключевое слово - 7 одинаковых прямоугольников! Пусть одна сторона этих прямоугольников x, а другая y. У одного прямоугольника периметр P = 2(x + y) = 20 x + y = 10; x = 10 - y. Приставим прямоугольники друг к другу в цепочку сторонами x. Получим длинный прямоугольник с сторонами x и 7y P = 2(x + 7y) = 2(10 - y + 7y) = 2(10 + 6y) = 100 10 + 6y = 50 6y = 40; y = 40/6 = 20/3 = 6 2/3; x = 10 - y = 3 1/3 = 10/3 Прямоугольник со сторонами 10/3 и 20/3 имеет периметр 20, а 7 таких прямоугольников, выстроенных в цепочку, дают прямоугольник с периметром 100.
2) Сумма 100 = 3*33 + 1 содержит 34 хороших слагаемых. Это и есть максимум.
Раскрываем скобки. Для этого, значение перед скобками умножаем на каждое значение в скобках, и складываем их в соответствии с их знаками. То есть получаем:
2 * 1 - 2 * sin ^ 2 x = 1 - sin x;
2 - 2 * sin ^ 2 x = 1 - sin x;
Перенесем все значения выражения на оду сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
2 * sin ^ 2 x - sin x + 1 - 2 = 0;
2 * sin ^ 2 x - sin x - 1 = 0;
1) sin x = 1;
x = pi/2 + 2 * pi * n, где n принадлежит Z;
2) sin x = - 1/2;
x = (- 1) ^ n * 7 * pi/6 + pi * n, где n принадлежит Z.
Объяснение: