М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
komarrik
komarrik
09.02.2021 04:19 •  Алгебра

Укажіть розв’язок рівняння 4ух :
А) (8; -4); Б) (9; 5); В) (10; -6); Г) (0; 4)
2. Укажіть пару чисел, яка є розв’язком рівняння 62ух :
А) (0; 3); Б) (1; 2); В) (3; 0); Г) (2; 1)
3. Укажіть, яка пара чисел є розв’язком системи рівнянь 


1832
;7
ух
ух

А) (1; 6); Б) (3; 4); В) (2; 5); Г) (-6; 10)
4. Розв’яжіть графічно систему рівнянь: 


13
;7
ух
ух
5. Розв’яжіть систему рівнянь додавання: 



732
;152
ух
ух

6. Розв’яжіть системи рівнянь:
А) 


1952
;643
ух
ух

Б) 



16)1(7)1(2
;10)1(5)3(6
ух
ух

7. Розв’яжіть задачу, склавши систему рівнянь.
Знайдіть два числа, сума яких дорівнює 340, а різниця – 3
1
більшого числа.

👇
Открыть все ответы
Ответ:
Teddy1bear
Teddy1bear
09.02.2021

1. < var > x^3y^34z^22y=8x^3y^4x^2 < /var ><var>x3y34z22y=8x3y4x2</var>

2. < var > -2x^60,5x^2y^3=-x^8y^3 < /var ><var>−2x60,5x2y3=−x8y3</var>

3. < var > (-5z^2y^3)^3=-125z^6y^9 < /var ><var>(−5z2y3)3=−125z6y9</var>

4. < var > -0,03ab^3=-0,03*(-4)*(-2)^3=0.96 < /var ><var>−0,03ab3=−0,03∗(−4)∗(−2)3=0.96</var>

5. < var > (18a^3b^2c)(\frac{1}{6}ab^3c^2)(-\frac{1}{3}a^2bc^3)=-a^6b^6c^6 < /var ><var>(18a3b2c)(61ab3c2)(−31a2bc3)=−a6b6c6</var>

Объяснение:

Рад

4,4(62 оценок)
Ответ:
PolinaFox6002
PolinaFox6002
09.02.2021

1. Чтобы начертить графики, необходимо составить таблицу значений для каждого выражения для соответствующих значений x:

 

x2+6x+8,еслиx∈[−6;−1].

 

x  

−6

−5

−4

−3

−2

−1

y        

 

x+2−−−−√+2,еслиx∈(−1;2].

 

x  

−1

0

1

2

y      

 

2. Заполняем обе таблицы значениями y, которые можно вычислить, подставив в выражение вместо x соответствующие значения аргумента:

 

x2+6x+8,еслиx∈[−6;−1];

 

a) y=(−6)2+6⋅(−6)+8=36−36+8=8;

b) y=(−5)2+6⋅(−5)+8=25−30+8=3;

c) y=(−4)2+6⋅(−4)+8=16−24+8=0;

d) y=(−3)2+6⋅(−3)+8=9−18+8=−1;

e) y=(−2)2+6⋅(−2)+8=4−12+8=0;

f) y=(−1)2+6⋅(−1)+8=1−6+8=3.

 

x  

−6

−5

−4

−3

−2

−1

y  

8  

3  

0  

−1  

0  

3

 

x+2−−−−√+2,еслиx∈(−1;2];

 

y=−1+2−−−−−−√+2=1–√+2=1+2=3;

y=0+2−−−−√+2=2–√+2≈1,41+2≈3,41;

y=1+2−−−−√+2=3–√+2≈1,73+2≈3,73;

y=2+2−−−−√+2=4–√+2=2+2=4.

 

x  

−1

0

1

2

y  

3  

3,41  

3,73  

4

 

3. Чертим график функции.

 

a4.png

При значении x, равном −1, по интервалу первого выражения точка должна быть закрашенной, но по интервалу второго выражения точка должна быть незакрашенной. В этой ситуации точка на чертеже должна быть закрашенной.

 

4. Интервалы возрастания и убывания функции определяем по оси x. Если при возрастании значений x значения функции возрастают (на рис. график идёт вверх), то на этом интервале функция возрастает. Если при возрастании значений x значения функции убывают (на рис. график идёт вниз), то на этом интервале функция убывает.

 

a4.png

 

Интервал возрастания функции: x∈[−3;2].

Интервал убывания функции: x∈[−6;−3].

 

5. Точку, в которой функция непрерывна и меняется с возрастающей на убывающую, называют максимумом функции. Точку, в которой функция непрерывна и меняется с убывающей на возрастающую, называют минимумом функции. Минимумы и максимумы функции называются экстремумами. Поэтому экстремумом функции является f(−3) = −1 (минимум функции).

 

6. Наибольшее и наименьшее значения функции находят по оси y, и они часто совпадают с экстремумами функции. Разница в том, что наибольшее и наименьшее значения есть в том случае, когда функция прерывается. В данном примере наибольшим значением функции является f(−6) = 8, наименьшим значением функции является f(−3) = −1.

 

7. Положительные и отрицательные значения функции определяют по оси x. Та часть функции, график которой находится ниже оси x, является отрицательной, а та, которая находится выше оси x, является положительной. Следовательно, функция положительна, если x∈[−6;−4)∪(−2;2], и отрицательна, если x∈(−4;−2).

 

8. Так как функция не симметрична ни относительно оси y , ни относительно начала координат, то она является ни чётной, ни нечётной.

 

9. Нулями функции являются те значения, при которых функция касается или пересекает ось x:

 

x1=−4,т. к.f(−4)=0;

x2=−2,т. к.f(−2)=0.

 

10. Точки пересечения с осями x и y можно определить по графику:

 

a) точки пересечения с осью x: (−4;0) и (−2;0);

б) точка пересечения с осью y: (0;3,41).

Объяснение:

4,7(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ