2sin2x + 3sinxcosx - 3cos2x = 1;
Представим 1 в виде суммы по основному тригонометрическому тождеству:
sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;
Приведем подобные:
sin2x + 3cosxsinx - 4cos2x = 0;
Разделим каждый член уравнения на cos2x:
tg2x + 3tgx - 4 = 0;
Произведем замену и решим квадратное уравнение:
t2 + 3t - 4 = 0;
D = 9 + 16 = 25;
t = (-3 +- 5)/2;
t1 = -4, t2 = 1;
Сделаем обратную замену:
tgx = 1; x = pi/4 + pin, n из Z;
tgx = -4; x = arctg(-4) pin, n из Z.
ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.
Объяснение:
Оцени!
Объяснение:
x²-3x<0
x(x-3)<0
Допустим:
x₁=0; x-3=0; x₂=3
Проверка при x₁>0 и x₂>3: 4²-3·4<0; 16-12<0; 4>0 - неравенство не соблюдается.
Проверка при x₁<0 и x₂<3: (-1)²-3·(-1)<0; 1+3<0; 4>0 - неравенство не соблюдается.
Проверка при x₁>0 и x₂<3: 1²-3·1<0; 1-3<0; -2<0 - неравенство соблюдается.
Следовательно, 0<x<3⇒x∈(0; 3).
/\
0/\3x
x²-7x-30≥0
Допустим:
x²-7x-30=0; D=49+120=169
x₁=(7-13)/2=-6/2=-3
x₂=(7+13)/2=20/2=10
Проверка при x₂>10: 11²-7·11-30≥0; 121-77-30≥0; 14>0 - неравенство соблюдается; при x₁>-3: 0²-7·0-30≥0; -30<0 - неравенство не соблюдается.
Проверка при x₁<-3: (-4)²-7·(-4)-30≥0; 16+28-30≥0; 14>0 - неравенство соблюдается.
Следовательно, -3>x>10⇒x∈(-∞; -3]∪[10; +∞).
\ /
\-310/x
Объяснение:
Надеюсь понятно..........