 
                                                 
                                                Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
 
                                                


![\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/f86a2.png)
![x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/5c623.png)

![x \in [ -2 ; 2 ] \ ;](/tpl/images/0535/4278/03b6e.png)



![x \in [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/2613a.png)


![x \in [ -1 ; 1 ] \ ;](/tpl/images/0535/4278/899ca.png)





![\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/7e7a6.png)
![x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;](/tpl/images/0535/4278/70a2f.png)

 
                                                 
                                                 
                                                 
                                                
(4,5 *10⁵)(2,5 *10⁻⁸)=4.5*2.5*10⁻³=11.25*10⁻³=1.125*10⁻²