Объяснение:
23х-12х+23=8х+20 18-3y-(21-5y)=43-(17+3y) 3x+1+(5x+8)=33+(x+11)
11х=8х+20-23 18-3у-21+5у=43-17-3у 3х+1+5х+8=33+х+11
11х-8х= -3 -3 + 2у=26 -3у 8х+9=44+х
3х= -3 2у+3у=26+3 8х-х=44-9
х= -3/3 5у=29 7х=35
х= -1 у=29*5 х=35/7
у=5,8 х=5
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
8 и 9
Объяснение: смотри файл