У нас есть правильный многоугольник. Поставим внутрь его точку, и проведем от этой точки отрезки ко всем углам многоугольника.
В итоге многоугольник разделится на треугольники.
Смотрим рисунок, на нем правильный 6-угольник.
Треугольников всегда будет столько же, как углов у многоугольника.
Сумма углов в каждом треугольнике равна 180°.
Сумма уголов во всех n треугольниках равна (180*n)°.
Сумма углов вокруг начальной точки (красная окружность) равна 360°.
Сумма углов многоугольника равна (180*n - 360)° = 180(n - 2)°
Так как многоугольник правильный, то все углы одинаковые.
Каждый угол равен 180(n - 2)/n. По условию он равен 108°.
180(n - 2)/n = 108
180(n - 2) = 108n
180n - 360 = 108n
180n - 108n = 360
n = 360/(180 - 108) = 360/72 = 5
с дискриминанта - 8 класс).
Решим квадратное уравнение через дискриминант. Если
, то уравнение имеет 2 корня, если
, то уравнение не имеет корней. (Если
, то уравнение имеет 1 корень)
Поскольку
, то данное квадратное уравнение имеет 2 корня. Найдём эти корни по формуле.
с группировки - 7 класс).
Представим число
в виде двух чисел:
и
. А затем сгрупируем по два члена в скобки и вынесен за скобки общий множитель.
По правилу если произведение равно нулю, то хотя бы один из данных множителей будет равняться нулю. Рассмотрим 2 единственных случая.
![1\Big) 2x-7=0 \Rightarrow 2x=7 \Rightarrow x=\cfrac{2}{7}=3,5 \\ \\ 2\Big) x-3=0 \Rightarrow x=3](/tpl/images/1187/6230/71d5b.png)
ответ:с дискриминанта - 8 класс).
Для начала нужно в правой части уравнения умножить многочлен на многочлен, а затем перенести все члены из правой части в левую со сменой знака, а в правой части поставим
.
Найдём дискриминант данного квадратного уравнения. Если
, то уравнение имеет 2 корня, если
, то уравнение не имеет корней. (Если
, то уравнение имеет 1 корень)
Поскольку
, то данное квадратное уравнение имеет 2 корня. Найдём эти корни по формуле.
с группировки - 7 класс).
Представим число
в виде двух чисел:
и
. А затем сгрупируем по два члена в скобки и вынесен за скобки общий множитель.
По правилу если произведение равно нулю, то хотя бы один из данных множителей будет равняться нулю. Рассмотрим 2 единственных случая.
![2x-3=0 \Rightarrow 2x=3 \Rightarrow x=\cfrac{3}{2}=1,5 \\ \\ x+4=0 \Rightarrow x=-4](/tpl/images/1187/6230/7e2f4.png)
ответ:Сделаем из данного уравнения систему и найдём дискриминант каждого нового уравнения. Если
, то уравнение имеет 2 корня, если
, то уравнение не имеет корней. (Если
, то уравнение имеет 1 корень)
Т.к.
, то данное уравнение НЕ ИМЕЕТ КОРНЕЙ! Теперь находим дискриминант второго квадратного уравнения:
Т.к.
, то данное уравнение имеет 2 корня. Решим данное уравнение по формуле.
![x_1=\cfrac{-b\pm \sqrt{D}}{2a}=\cfrac{-\Big(-1\Big)+\sqrt{17}}{2\cdot2}=\cfrac{1+\sqrt{17}}{4} \\ \\ x_2=\cfrac{-b\pm \sqrt{D}}{2a}=\cfrac{-\Big(-1\Big)-\sqrt{17}}{2\cdot2}=\cfrac{1-\sqrt{17}}{4}](/tpl/images/1187/6230/b395f.png)
ответ: уравнение имеет 2 корня.Задание #9.Сначала находим неизвестный множитель, деля произведение на известный множитель, а затем находим корень(-и) данного уравнения.
![2x^2=\cfrac{1}{2} \Rightarrow x^2=\cfrac{1}{2}\cdot \cfrac{1}{2} \Rightarrow x^2=\cfrac{1}{4} \Rightarrow x=\pm \sqrt{\cfrac{1}{4}} \Rightarrow x=\pm \cfrac{1}{2}](/tpl/images/1187/6230/b370f.png)
ответ: