Определим делимое число без остатка 2015 - 215 = 1800 , тогда можно записать 2015 : n = (1800 + 215) : n Таким образом нужно найти натурально число n > 215 на которое делится число 1800, для этого разложим число 1800 на множители 1) 1800 = 2*900 2) 1800 = 3*600 3) 1800 = 4*450 4) 1800 = 5*360 5) 1800 = 6*300 6) 1800 = 8*225
Таким образом получаем все варианты деления числа 2015 на следующее натурально число n: 1) 2015 : 900 = 2 целых 215 остаток 2) 2015 : 600 = 3 целых 215 остаток 3) 2015 : 450 = 4 целых 215 остаток 4) 2015 : 360 = 5 целых 215 остаток 5) 2015 : 300 = 6 целых 215 остаток 6) 2015 : 225 = 8 целых 215 остаток
-x²-6x-7=x+3
x²+7x+10=0 D=9
x₁=-5 x₂=-2
S=₋₂∫⁻⁵(-x²-6x-7-x-3)dx=₋₂∫⁻⁵(-x²-7x-10)dx==(-x³/3-3,5x²-10x) ₋₂|⁻⁵= =(-(-5)³/3-3,5*(-5)²-10*(-5)-(-(-2)³/3-3,5*(-2)²-10*(-2)))=
=(125/3-87,5+50-(8/3-14+20))=(125/3-37,5-8/3-6)=(43,5-117/3)=(117/3-87/2)= =(117*2-87*3)/6=(234-261)/6=(-27/6)=-9/2=|-4,5|=4,5.
ответ: S=4,5 кв. ед.
y=-x²-6x-11 y=-x+3
-x²+6x-11=-x+3
x²-7x+14=0 D=-7 ⇒ уравнение не имеет действительных корней ⇒
графики y=-x²-6x-11 и y=-x+3 не пересекаются.