Уравнение любой касательной к любому графику находится по формуле: Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае: Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
s s |*| Обозначим весь путь 2s, х км в час скорость Семена, у км в час - скорость машины. Тогда на путь от дома до школы Семен тратит t часов, которые равны сумме времени, затраченного на путь на машине и пешком.
(s/x)+(s/y)=t
Если Семён пойдет пешком всю дорогу, то опоздает на пол часа. Т. е на путь 2s cо скоростью х км в час, затратит время t+(30/60).
2s/x=t+(30/60)⇒ s/x=(t/2)+(1/4)
Тогда время, затраченное на проезд половины пути на машине: (s/y)=t-(s/v)=t-(t/2)-(1/4)=(t/2)-(1/4).
Находим время, затраченное на проезд (2/3) пути на машине, т.е. (2/3) от 2s делим на скорость у км в час:
(4s/3y)=(4/3)·(t/2)-(4/3)·(1/4)= (2t/3)-(1/3)
Находим время затраченное на прохождение (1/3) пути пешком машине, т.е. (1/3) от 2s делим на скорость х км в час.
Відповідь:
(x+1)*(2x-1) : x+1=0
х+1=0
х=-1
х є R\(-1)
Пояснення: