М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vbrcb
vbrcb
13.10.2020 00:33 •  Алгебра

1)Выполни действия:

460,37⋅73−24,752:7,28=

2)Найди значение выражения наиболее рациональным Вычисли корень уравнения:

22,6−z=4,4.
z=

4)Расстояние между двумя пристанями равно 105,6 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 2,2 ч. лодки встретились. Скорость течения реки равна 4 км/ч.
Скорость лодки в стоячей воде равна ...км
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
... км.

5)Раскрой скобки:

(4x−6)⋅(−6)=

6)Какое число должно быть на месте многоточий в равенстве?
.
(6w+...)(6w−...) = 36w2−9.

7)Вычисли: 5,8⋅11−2⋅5,8+11⋅14,2−2⋅14,2=

8)Найди значение выражения 7,4−(−9,2)=

👇
Ответ:
Кряквочка
Кряквочка
13.10.2020
1. 33603,62
2. 20
3. 18,2
4.
5. -24x+36
6.
7. 180
8.16,6
4,6(25 оценок)
Ответ:
elias7114
elias7114
13.10.2020

ответ: 1)33603.61

2)(42.8-2.8):2=20

3)22.6-4.4=18.2

4)не стал решать

5)-24х+36

6)3

7)180

8)16.6

4,6(23 оценок)
Открыть все ответы
Ответ:
saitovdamir20Damit
saitovdamir20Damit
13.10.2020

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,6(70 оценок)
Ответ:
милка326
милка326
13.10.2020

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,5(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ