Преобразуем 2 уравнение:
(x+y)^2-(x+y)=0
(x+y)(x+y-1)=0 - произведение равно 0, если хотя бы один множитель равен 0
в 1 уравнении делаем замену:
xy=t
получим:
t^2+2t=3
t^2+2t-3=0
D=4+12=16=4^2
t1=(-2+4)/2=1
t2=(-2-4)/2=-3
система разделится на 4 системы
1) xy=1
x+y=0
x=-y
-y^2=1
y^2=-1
y - нет решений
2) xy=1
x+y-1=0
x=1-y
(1-y)y=1
-y^2+y-1=0
y^2-y+1=0
D<0
y - нет корней
3) xy=-3
x+y=0
x=-y
-y^2=-3
y^2=3
y1=sqrt(3)
y2=-sqrt(3)
x1=-sqrt(3)
x2=sqrt(3)
4) xy=-3
x+y-1=0
x=1-y
(1-y)*y=-3
-y^2+y=-3
-y^2+y+3=0
y^2-y-3=0
D=1+12=13
y3=(1+sqrt(13))/2
y4=(1-sqrt(13))/2
x3=1-(1+sqrt(13))/2=(2-1-sqrt(13))/2=(1-sqrt(13))/2
x4=1-(1-sqrt(13))/2=(2-1+sqrt(13))/2=(1+sqrt(13))/2
ответ: (-sqrt(3);sqrt(3)), (sqrt(3);-sqrt(3)), ((1-sqrt(13))/2;(1+sqrt(13))/2), ((1+sqrt(13))/2;(1-sqrt(13))/2)
Объяснение:
вродебы так
Пусть необходимое количество 20%-ного раствора будет х л, а 70%-ного - у л. Тогда всего надо взять х+у или 100 л. Содержание соляной кислоты в 20%-ном растворе будет 0,2х, в 70%-ном - 0,7у, а в полученном 50%-ном - 0,5*100 л или 0,2х+0,7у. Составим и решим систему уравнений:
х+у=100
0,2х+0,7у=0,5*100 |*10
х=100-у
2x+7у=500
х=100-у
2(100-у)+7у=500
х=100-у
200-2у+7у=500
х=100-у
5у=500-200
х=100-у
5у=300
х=100-у
у=300:5
х=100-у
у=60
х=100-60
у=60
х=40
у=60
ответ: для того, чтобы получить 100 л 50%-ного раствора соляной кислоты, необходимо взять 40 литров её 20%-ного раствора и 60 литров 70%-ного раствора.