Первое задание:
1)3х^2 - х^3.
2•3х-3х^2
6х-3х^2
2) 4х^2+6х+3
2•4х+6
8х+6
3) Есть два решения:
(3х^2+1)(3х^2-1).
Расписываем по формуле умножения:
(3х^2+1)’(3х^2-1)+(3х^2+1)(3х^2-1)’
Берём производную:
(2•3х)(3х^2-1)+(3х^2+1)(2•3х)
(6х)(3х^2-1)+(3х^2+1)(6х)
(18х^3 - 6х)+(18х^3 + 6х)
18х^3-6х+18х^3+6х
18х^3+18х^3
36х^3
Второй вариант - изначально увидеть формулу умножения и упростить. Но ответ одинаковый.
4) Очень не удобно через телефон, ибо деление. Если никто не решит - скажешь отправлю фотку решения.
Второе задание:
у = 1-6х^3
у’ = -3•6х^2
у’= -18х^2
у’(х0) = -18•8^2 = -1152
Третье задание:
s(t) = 2,5t^2+1,5t
s(t)’ = V(t)
s(t)’ = 2•2,5t+1,5
s(t)’ = 5t+1,5
V(t)=5t+1,5
V(4)=5•4+1,5=21,5.
ответ: 21,5.
Четвёртое задание так же по формуле деления, с телефона не удобно, по этому если никто не решит - напишешь
в) Преобразуем числитель. (1-cos²x+sin²x)/(x*tg3x)=2sin²x/(x*tg3x), подведем данную запись под первый замечательный предел. При икс, стремящемся к нулю, sinx ; tg3x эквивалентны х и 3х соответственно, а потому получим предел дроби 2*х*х/(х*3х) и он равен 2/3.
ответ 2/3
г) преобразуем (4-x)*(㏑(2-3х)-㏑(5-3х))=(4-x)*(㏑((2-3х)/(5-3х))=
(4-x)㏑((3х-2)/(3х-5))=(4-x)㏑((1+3/(3x-5))=㏑((1+3/(3x-5))^(4-x)
cвели решение ко второму замечательному пределу, возьмем сначала предел от (1+3/(3x-5))^(4-x), а затем логарифм от полученного предела.
представим (1+3/(3x-5))⁽⁴ ⁻ˣ⁾=(((1+(3/(3x-5)))⁽³ˣ ⁻⁵⁾/³))⁽³⁽⁽⁴⁻ˣ⁾/⁽³ ˣ⁻⁵)предел от этого выражения равен е⁻¹, а ㏑е⁻¹=-1*lnе=-1
ответ -1
2 + 7/4 -5
-3+ 7/4
- 5/4