Пусть (10х + у) - неизвестное двузначное число, тогда ху - произведение цифр этого числа. Получаем первое уравнение системы уравнений: 10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений: 10х + у = 5(х + у)
Найдем значение х, если y = 5: 10х + 5 - 5х = 25 5х = 25 - 5 5х = 20 х = 20 : 5 х = 4 Получаем двузначное число: 10 * 4 + 5 = 45
Найдем значение у, если х = 5: 10 * 5 + у - 5у = 25 50 - 4у = 25 4у = 50 - 25 4у = 25 у = 25 : 4 у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0). ответ: 45.
Пусть (10х + у) - неизвестное двузначное число, тогда ху - произведение цифр этого числа. Получаем первое уравнение системы уравнений: 10х + у - ху = 25
Так как неизвестное двузначное число в 5 раз больше суммы своих цифр, получаем второе уравнение системы уравнений: 10х + у = 5(х + у)
Найдем значение х, если y = 5: 10х + 5 - 5х = 25 5х = 25 - 5 5х = 20 х = 20 : 5 х = 4 Получаем двузначное число: 10 * 4 + 5 = 45
Найдем значение у, если х = 5: 10 * 5 + у - 5у = 25 50 - 4у = 25 4у = 50 - 25 4у = 25 у = 25 : 4 у = 6,25 - не удовлетворяет условию, т.к. цифра разряда единиц должна быть натуральным числом (или 0). ответ: 45.
1)(x+8)(x-5)
2)(2x+3)(3x-4)
Объяснение:
2)Перепишем квадратный трёхчлен в другом виде:
6х^2+9х-8х-12
(Где ^2 - вторая степень х)
Затем сгруппируем и вынесем общие множители:
3х(2х+3)-4(2х+3)
Теперь соединим (3х-4)(2х+3)
1) Тоже самое:
х^2+8х-5х-40
х(х+8)-5(х+8)
(х+8)((х-5)