1) 1.1 По классической формуле DC*AD. DC=DK+KC=30+4=34. S=34*6=204 см²
1.2 Сначала найти площадь ADKM (1) и прибавить площадь MKCB (2).
S(1)=AD*DK=6*30=180 см² S(2)=MK*KC (MK=BC=AD по св-ву прямоугольника) S(2)=4*6=24 см² S=S(1)+S(2)=180+24=204 см²
2) 2.1 Проведём линию между A и К, получим прямоугольный треугольник. Тогда расстояние АK=\begin{gathered}\sqrt{AD^{2}+DK^{2} } \\\end{gathered}
AD
2
+DK
2
=\sqrt{6^{2}+30^{2} =6\sqrt{26}
2.2 Так же как и в пункте 2.1: BD=\sqrt{DC^{2}+BC^{2} }
DC
2
+BC
2
=\sqrt{34^{2}+6^{2} }
34
2
+6
2
=2\sqrt{298}2
298
Объяснение:
это правильно можно корону чтобы я мог перити на следующий уровень просто уменя день рождения
вот так
Объяснение:
1. Определи угол между диагоналями, которые находятся в соседних гранях куба и имеют общий конец:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть такой треугольник, который образован из двух данных диагоналей и еще одной, которая соединяет концы данных диагоналей.
У куба все грани — равные квадраты, диагонали которых одинаковы. Треугольник равносторонний, и угол между DC1 и DB равен 60°.
2. Определи угол между диагоналями, которые находятся в соседних гранях куба и не имеют общий конец:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть диагонали 1 и 2. Они скрещивающиеся, поэтому переместим их в одну плоскость, передевигая диагональ 2 на 3.
Получилась уже рассмотренная ситуация, и угол между BD и AD1 равен 60°.
3. Определи угол между диагоналями, которые находятся в противоположных гранях куба, но не параллельны:
image
Так как куб — правильный многогранник, в независимости от размещения данных диагоналей, достаточно рассмотерть диагонали 1 и 2. Они скрещивающиеся, поэтому переместим их в одну плоскость, передевигая диагональ 2 на 3.
У куба все грани — квадраты, диагонали квадрата перпендикулярны, и угол между DA1 и BC1 равен 90°.